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Abstract

Patrick McKee

ARIMAA: DEVELOPING A HIGHER RANKED FALL BACK MOVE GENERATOR

USING A RELATIONAL DATABASE

Dr. Nancy Tinkham, Ph.D.

Master of Science in Computer Science

Our approach to playing the game of Arimaa understands that the game was 

created to showcase the limits of brute force computing power.  Using a relational 

database, we will be able to view similar situations that have already been played out, 

inventory a number of suitable reactions and make the best move given a number of 

attributes.  This results in us making a decision that can theoretically result in a win, and 

hopefully will.

Measurable positive results have been procured specifically from the area of 

concentration component of the research.  In the area of concentration component we 

target a specific square on the board based on prior moves.  This square becomes the 

focal point of our research that we develop an attribute index for.  After querying the 

database to see if we can find a previous game that contained this exact same area of 

concentration, we either make a move or fall back.  If we fall back, we take into account 

our developed shrinking method where we target specific pieces whose strengths 

essentially do not matter in terms of making a move.  It is with this action that we have 

developed measurable positive results that, with further research, may amount to a 

permanent fixture as a better fall back move generator.
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Chapter 1

Introduction and Rules

1.1 – Background

With the advent of the chess playing computer Deep Blue, who won the iconic 

chess match against Gary Kasparov in 1997, IBM proved that their artificial intelligence 

systems could overtake human opponents.  This defeat fueled the curiosity and ingenuity 

of a man named Omar Syed, an Indian American computer engineer.  Syed believed that 

Kasparov (1999)“had just been out calculated, not really out smarted[sic]” in his defeat.  

He believed that Kasparov was not able to showcase his true brilliance in a game of 

Chess, and felt compelled to develop a game that needed (1999) “the kind of real 

intelligence that humans possess and computers have not even begun to acquire”. This 

game would come to be known as Arimaa.

Using a standard chess board, Syed created a game whose rule set was a 

purposeful hindrance to the current artificial intelligence and game playing theories.  In 

game playing, a branching factor is a way of describing the difficulty of a game.  A game 

is represented by a tree data structure, and the branching factor is the number of children 

generated by a node.  The branching factor of a game of chess is about 35, while the 

branching factor of a game of Arimaa is around 17,281 (Haskin, 2006).  This means that 

the particular strategies of tree traversal that are used for chess are severely limited in the 

game of Arimaa.
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1.2 – Setup and Movement

The game of Arimaa can be played on a standard chess board with standard chess 

pieces.  Each piece in Chess corresponds to a piece in Arimaa.  The table below gives the 

represented equalities.

Table 1 – Chess and Arimaa Equivalences

Chess Arimaa Arimaa Shorthand

King Elephant E or e

Queen Camel M or m

Rook Horse H or h

Bishop Dog D or d

Knight Cat C or c

Pawn Rabbit R or r

The pieces carry an inherent weight that is used to represent their strength.  The weights 

correspond to the general weight of the animal the piece represents.  The elephant is the 

strongest piece, followed by the camel, followed by the horse and so on with the rabbit 

being the weakest piece.  The goal is for a player to move one of his rabbit pieces to the 

other end of the board on any square in the back row of the opponent's side of the board.  

The game is divided into two teams, a gold team and a silver team (formerly a white team

and a black team).  The game has a start state of an empty board.  Letters a through h 

designate the horizontal axes from left to right, while numbers 1 through 8 designate the 
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vertical axes from the bottom to the top.  Coins, or another token, are to be placed on 

squares c3, f3, c6, and f6.  These squares represent traps, the significance of which will 

be explained later.

Figure 1 – An Arimaa Start State Board  (The darker colored squares represent traps.)

The player representing the gold team gets the honor of placing his pieces on the board 

first.  The gold player may place his pieces in any order that he wants, filling the back 

two rows on his side of the game board.  Once he is finished, the silver player then does 

the same.  After the pieces are arranged, the players may begin their turns moving pieces, 

with the gold player going first.  Each player gets a maximum of 4 moves per turn, with a

minimum of 1 move that must be taken.  Each piece, except the rabbit, may move to 
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occupy any unoccupied square adjacent to it (that is forward, backward, left, or right).  

There is no diagonal movement.  This movement constitutes a single move.  A rabbit, 

however, may not move backward, and therefore can only move forward, left, and right.  

Figure 2 – Example Moves for a Camel and a Rabbit (The black squares on the left

indicate possible moves for the silver camel.  The black squares on the right indicate

possible moves for the rabbit, though moving into a trap square is not always wise!)

If a piece happens to move into a position where it is adjacent to an opponent’s piece of a 

stronger weight it is at risk of becoming frozen.  If the weaker piece is not adjacent to a 

friendly piece, that weaker piece is now frozen and immediately loses its ability to move. 

There are two ways to have a piece unfrozen.  The first way is to wait for the piece of 
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stronger weight to move from the adjacent square.  The second way is for the frozen 

piece to have an ally of any strength move into an adjacent square.  In both situations the 

unfreezing is immediate rather than occurring at the end of the turn.

1.3 – Pushing / Pulling, Elimination and Win States

In a turn, a player may also push or pull an opponent’s piece.  Pushing and pulling

may be done to an enemy piece by a piece only of greater weight.  In a push, a piece is 

moved to an adjacent square as if it was making the move itself, but following this move 

the piece doing the pushing then occupies the square of the weaker piece.  A pull is done 

by moving the stronger piece to an open square where it may possibly move to as if it 

were taking a turn, but then replacing the square that the stronger piece inhabited with the

weaker piece.  A push and a pull take two moves; therefore only two can be accomplished

in a given turn.  Pushes and pulls can be used with regular moves as well, so a player may

move two squares to a piece, and then follow through with a push or pull.  Pushes and 

pulls are key in eliminating the opponent's pieces from the game.

To eliminate a piece from the game, a player may push or pull an enemy's piece 

into one of the trap squares.  Once the movement is over, the piece in the trap square is 

removed from the game if the weaker piece does not have any friendly pieces adjacent to 

that trap square.  If a piece in a trap square has an ally piece of any strength adjacent to 

that square, it is said to be protected and is not removed from the game.  If a piece is on a 

trap square and is protected by a friendly piece, the piece on the trap square is captured 

immediately if that friendly piece moves either of its own accord or by being pushed or 
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pulled.

A win state is accomplished in one of three ways.  A player may win by having 

one of his rabbits occupy the back row of the opponent's game board.  Secondly, a player 

may win if he renders the other player without any moves, either by trap situations or by 

freezing.  Lastly, a player may win if he manages to capture all of the opponent's pieces 

in traps.

1.4 – Notation

To our benefit, each game that is played online using the Arimaa game room is 

recorded.  The first two steps, the board placement steps, use a set of three character 

strings separated by a space.  The first character is the Arimaa shorthand notation for the 

piece that is being placed (uppercase for gold, lowercase for silver).  The second 

character is the column (a lowercase letter from a to h).  The third character is the row (a 

number from 1 to 8).  A sample starting position would be written as Ra1 Rb1 Rc1 Cd1 

Ce1 Rf1 Rg1 Rh1 Ra2 Hb2 Dc2 Md2 Ee2 Df2 Hg2 Rh2.  After the turn is finished an end

line character (\n) is used.  Once the starting positions are finished the notation changes.  

The three character strings become 4 character strings with the new character designating

the movement of the piece (n, e, w, s).  For example, Ra1n means that the gold rabbit in 

position a1 is moving north, therefore his new position will be Ra2.  The new position is 

not set up in the database, but it can be discovered by an accurate trace.  The intention 

and invention of that program is where our research begins.  Before we address this, 

however, there is one caveat of Arimaa that makes brute force even more difficult, and 
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that is the concept of time constraints.

1.5 – Time Constraints

Arimaa has a set of time rules that can change from match to match.  Users can 

agree not to restrict themselves to a time limit, but for the most part games are played 

with an inherent time factor.  This time factor is specified as M/R/P/L/G/T.  M is the 

number of minutes and seconds allowed per move.  If a user finishes his move before M 

elapses, then the remaining time is placed into R based on a percentage P.  R can increase 

throughout the game for each move until a max amount, L, is reached.  G is the total time

allowed for a game and T is the total time that a user has to make a move in a turn.  If a 

user fails to make a move in the allotted time designated by M+R, then the user loses.  If 

G elapses, then the game is scored by captured pieces and the winner is determined that 

way.  M and R are the only pieces of information that are required.  P defaults to 100, L, 

G and T default to 0 which means no limit.  For example, if M is two minutes and R is 0 

on the first move, if a user makes a move in 30 seconds, then a minute and a half is 

moved to R.  If the user exhausts the two minutes in M on his next turn, then he has 

another 1 minute and 30 seconds to finish his move before he is declared in violation and 

loses the game.  These time limit rules are important because they are strictly enforced in 

tournament style games and in the Arimaa game room where most of our test games will 

take place.  It is therefore imperative that our program function in a capacity where 

performance and speed is important, because our program is going to compete directly 

with an approach that is built for speed.
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1.6 – Literature Review

Arimaa, being a relatively new field of interest, has not been blessed with the 

benefit of time, therefore the literature surrounding the research is limited.  One of the 

first papers that I read that gave me an understanding of how others approached the idea 

of move-making was “Move Ranking and Evaluation in the Game of Arimaa” by David 

Jian Wu of Harvard College (Wu, 2011).  In his paper, David Jian Wu discusses 

separating moves from each other and viewing them as a competition against each other 

with only one move able to be the expert.  He expresses this competition using the 

Bradley-Terry Model, a model first used by a man named Coulom with respect to the 

game of Go (Coulom, 2007).  In this model individual competitions are waged between 

move sets using a probability that is proportional to strengths assigned to the moves.  The

judgment call and definition of these strengths is based on a model developed over a set 

of game records.  It was this paper that started the idea of using past game records to 

develop a new approach.

The new approach of using previously played games was kept on the back burner 

as we began researching traditional methods.  Choksi, Ebrahim-Zadeh and Mohan of 

Stanford developed a method to determine game phase in the paper “Leveraging Game 

Phase in Arimaa” (Choksi, Ebrahim-Zadeh & Mohan, 2013).  Game phase was an 

important subject piece because it was the first paper we read that acknowledged game 

moves in different portions of a game should not be judged the same way.  Unfortunately,

the efforts of this technique were for naught as the methods adapted and used did not end 

up faring well against the simple 2-ply mini-max search with alpha-beta pruning.  The 
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technique, however, of separating portions of a game became of high interest as a 

technique that may not work with a tree based approach, but perhaps may work with an 

approach that uses past games.

The final paper that we reviewed was “Methods of MCTS and the game Arimaa” 

by Tomas Kozelek of Charles University in Prague (Kozelek, 2009).  In this paper, a 

Monte Carlo approach was used; that is, simulated games were played until completion, 

the results were ranked, and those results were then used to compute the best move set for

a given input state.  The Monte Carlo approach, again, resulted in poor performance.  It 

was not until a hybrid Monte Carlo method was developed involving heuristics that the 

research began to bear fruit.  The Monte Carlo method was interesting because the 

bottleneck involved, the simulated playing out of the games, was something that we 

could somewhat estimate based on the fact that we had a database of simulated games 

already at our disposal.  We then began to wonder if we could use this approach 

accompanied with the others to create a hybrid solver based on past games.

The idea being presented was to take the current research and adapt it for use in a 

database.  We would use a set of simulated games, like the Monte Carlo approach, and 

then separate the game states into different areas based on characteristics of our database 

responses.  These areas would then be assessed based on the historical significance of 

previously played games.  This way we would be able to use and develop previously 

failed ideas in a new light, and hopefully develop a more enhanced game playing bot.
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1.7 – The Current Method

As discussed on Page 21 in further detail, Arimaa brute forcing of a game tree can

easily look two moves ahead.  Many bots use this fact when developing their approach.  

A popular approach is to take some amount of allotted time to decide which move to 

follow through with.  If time is becoming an issue, the bot starts a search tree that looks 

two moves ahead to find a fall back move in case the original move function did not 

happen fast enough.  The amount of time taken varies, but a safe padding is around 30 

seconds so that the two minute M mark is not reached.  This current method, though 

helpful in not losing, basically amounts to a move that is no better than a random move.  

Therefore, as we run our tests on data retrieval, we will be looking at response times to 

make sure that we are not in violation of the standard 30 second buffer that is used for the

two move search tree.  It is important that our first set of moves occur in a quick fashion 

as well, so that we can develop a large bank in R, just in case we violate our time 

constraint.  When we run our tests we will keep track of time allowed per move and we 

will be looking at scaling to see how this will improve based on the pool of moves that 

we need to evaluate at each step.  With that said, we will now take a look at how we set 

up our database.
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Chapter 2

Setting Up Our Database

This chapter includes information on where we received our data, what it means, 

how we process it, where we store it and how we store it.

2.1 – The Archives

Our approach to Arimaa is one where we will try to mimic the behavior of a 

previous player.  To do so, we must take into account previous games that have been 

played.  The Arimaa website contains a running archive of games that have been played 

starting from 2002 to current day.  To begin, we downloaded all the archives starting from

the beginning of 2002 to 3/23/2013 totaling 261,080 games from the Arimaa archives at 

http://arimaa.com/arimaa/download/gameData.  The archives are in the form of tab 

delimited text files.  They are structured like a database with the following columns

Table 2 – Database Setup for the Arimaa Game Archives

Column Name Type Description

id INT A unique ID used to identify 
the game in the Arimaa 
database

gplayerid INT The player ID from the 
Arimaa website of the gold 
player

splayerid INT The player ID from the 
Arimaa website of the silver 
player
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gusername STRING The user name from the 
Arimaa website of the gold 
player

susername STRING The user name from the 
Arimaa website of the silver 
player

gtitle STRING Title of the gold player in 
ranked games

stitle STRING Title of the silver player in 
ranked games

gcountry STRING The country where the gold 
player resides

scountry STRING The country where the silver 
player resides

grating INT The player rating of the gold 
player

srating INT The player rating of the silver 
player

gtype CHAR The type of player for the 
gold player stored as a char 
where h is human and b is bot

stype CHAR The type of player for the 
silver player stored as a char 
where h is human and b is bot

event STRING The name of the event where 
the match took place such as 
Casual game

site STRING The location of the event

timecontrol STRING The type of time control for 
the game

12



postal BOOLEAN This field marks whether or 
not a game is a long form 
game.  A long form game has 
looser time constraints 
defined in the time control.

startts INT Timestamp for the start of the 
game

endts INT Time stamp for the end of the 
game

result CHAR The winning player

termination CHAR How the player lost

plycount INT The move count

mode STRING The rule set of the game 

rated BOOLEAN Whether or not the game is 
rated

movelist STRING The entire move list in 
Arimaa notation which is 
delimited with a \n to indicate
an end of line

events STRING The event list of the game in 
Arimaa notation which is 
delimited with a \n to indicate
an end of line

*Note – Some databases use the terms w and b rather than g and s since early iterations of

the Arimaa game called the pieces white and black rather than gold and silver.  This is 

taken into account when parsing the files.
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2.2 – Our Machine and the Import of the Archives

Our data will be stored on a machine with the following specs: Intel i5 760 2.8 

GHz Quad Core Processor, 6GB of DDR3 RAM and 2 x 500GB SATA Hard Drives in 

RAID 1.  This machine is running Ubuntu 12.4, MySQL 5.5.31 and PHP 5.3.  The data 

was successfully imported in three hours and twenty-three minutes run at normal priority.

It is important that our machine be “consumer grade”, as the rules for Arimaa 

tournaments strictly prohibit the participation of any machine constructed of parts not 

available either by stock or price by the average consumer.

2.3 – Translating the Archives to Our Database

The archives contain a large amount of data, most of which is unnecessary for our

goal.  Our goal is to take the archives and parse them to create our own database using 

select pieces of information that are important to us.  The following is the database that 

was designed and the data we wish to achieve with our successful parse.
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Table 3 – Database Layout for our Processed Games

Column Name Type Description

id BIGINT Unique row identifier 
(auto_increment, unique, 
primary key)

game_id INT Game number from the 
original database

turn SMALLINT What turn we are on

side ENUM(‘b’,’w’,’g’,’s’) Which side is making the 
move

brating SMALLINT Black’s rating after game is 
over

wrating SMALLINT White’s rating after game is 
over

winner ENUM(‘b’,’w’,’g’,’s’) Which side won

boardstatus CHAR(64) The board as it looked before 
the move took place to 
analyze as if move will be 
made by black. 64 characters, 
A8-H8, A7-H7...A1-H1. 
Character representing pieces,
or ‘-’ for no piece

next_move VARCHAR(255) Move notation for the move 
they made next

maxturns SMALLINT Total number of turns for the 
side in this game.  For here 
we can get turns left for a 
game.
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Table 4 – Indexes for our Database

Index Name Index Type Fields Purpose

Primary Primary Key id Primary key for row

move index boardstatus Data search will be 
for a specific board 
(boardstatus). We’ll 
be returning the next 
move and sorting by 
rating, number of 
moves left, and if 
they won or not, but 
this is not what 
you’re searching for 
and is not in the index

The rationale for the design of the database is that we have available to us, thanks 

to the archives, a move list.  We want to take this move list and trace it, storing each 

individual board state that was achieved during the game and the move that occurred after

that state.  By doing so we can develop a database of possible next moves given a board 

state.  To do so, we developed a program, written in PHP, that created this inventory of 

board states from the move lists.  The program is available in File 1.  At the completion 

of the import, which took 86 hours and 3 minutes, we now had a database of useful 

information for our next step.
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Chapter 3

Developing a Mimic Strategy

In this chapter we will discuss our strategy to reproduce past moves that have 

been made by former players.  We will also address the algorithm used to decide what is 

the best move.

3.1 – Finding the Best Starting Position

Our game database contains 261,080 games, starting from 2002 and ending on 

3/23/2013.  We will discuss two ways to approach the situation of starting position that 

will yield the largest useable database subset.  In the event that we are gold, we are given 

the opportunity of arranging our pieces first.  In this event, we want to run a query that 

will return the most common starting position in the database.  By receiving the most 

common starting position in the database we are increasing our set of useable games that 

have already been played, and thus will have a larger sample size of games to reference.  

We must therefore define a query to give all the unique gold starts and how many times 

they got used.  By analyzing this we can determine what the best starting position is for 

us as gold, because a starting position that is used the most will give us the largest usable 

subset to work with.  The query that was designed was

SELECT COUNT(*) AS number_repeats, next_move FROM moves WHERE turn=1 

AND (side='w' OR side='g') GROUP BY next_move
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This query returns a result in 656 seconds with a database size of 261080 games.  This, of

course, is too long a response time to conduct in game; therefore the favored starting 

position will be either hard coded in or stored in the database.  The following table shows

the top ten positions and calculates the percentage of total games that used these 

positions.  As can be seen, there is a clear favorite starting position so our usable subset is

still large.

Table 5 – Top Ten Most Popular Starting Positions

Rank Number of Games Position % of Database

1 19398 Ra1 Rb1 Rc1 Cd1 

Ce1 Rf1 Rg1 Rh1 

Ra2 Hb2 Dc2 Md2 

Ee2 Df2 Hg2 Rh2

7.43%

2 12784 Ra1 Rb1 Rc1 Rd1 
Re1 Rf1 Rg1 Rh1 
Da2 Hb2 Cc2 Md2 
Ee2 Cf2 Hg2 Dh2

4.90%

3 10996 Ra1 Rb1 Rc1 Rd1 
Re1 Rf1 Rg1 Rh1 
Da2 Hb2 Cc2 Ed2 
Me2 Cf2 Hg2 Dh2

4.21%

4 10308 Ra1 Rb1 Rc1 Dd1 
De1 Rf1 Rg1 Rh1 
Hb2 Ra2 Cc2 Md2 
Ee2 Cf2 Rh2 Hg2

3.95%
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5 9132 Ra1 Rb1 Rc1 Rd1 
Re1 Rf1 Rg1 Rh1 
Ha2 Db2 Cc2 Md2 
Ee2 Cf2 Dg2 Hh2

3.5%

6 9013 Ra1 Rb1 Rc1 Dd1 
De1 Rf1 Rg1 Rh1 
Ra2 Hb2 Cc2 Ed2 
Me2 Cf2 Hg2 Rh2

3.45%

7 8604 Ra1 Rb1 Rc1 Dd1 
De1 Rf1 Rg1 Rh1 
Ra2 Hb2 Cc2 Md2 
Ee2 Cf2 Hg2 Rh2

3.3%

8 6295 Ra1 Rb1 Rc1 Cd1 
Ce1 Rf1 Rg1 Rh1 
Ra2 Hb2 Dc2 Ed2 
Me2 Df2 Hg2 Rh2

2.41%

9 5717 Ra2 Hb2 Dc2 Ed2 
Me2 Df2 Hg2 Rh2 
Ra1 Rb1 Rc1 Cd1 
Ce1 Rf1 Rg1 Rh1

2.19%

10 5138 Ra2 Db2 Hc2 Ed2 
Me2 Hf2 Dg2 Rh2 
Ra1 Rb1 Rc1 Cd1 
Ce1 Rf1 Rg1 Rh1

1.97%

Therefore the start position that we will choose if we are gold is Ra1 Rb1 Rc1 Cd1 Ce1 

Rf1 Rg1 Rh1 Ra2 Hb2 Dc2 Md2 Ee2 Df2 Hg2 Rh2.  It may also be worthwhile to note 

that there are only 22737 different starts in a database of 261080 games.

The second situation we must discuss is when we are silver.  When we are silver 

we move second.  This means we must react, and are no longer interested in the most 

common starting position, as it may not be worthwhile to use it.  Therefore, we must then

search the database for games where gold had the same start position as the game we are 
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currently in, and then we must find the most common silver start position.  To develop a 

query and test the performance, we used the gold starting position given above as the 

position we are reacting to.  The following query was designed to return our best move 

set given gold’s decision

SELECT next_move FROM moves WHERE turn=1 AND (side='b' OR side='s') AND 

boardstatus='------------------------------------------------RHDMEDHRRRRCCRRR ' 

The biggest problem with being silver is that we are in a position that needs to react and 

must therefore run this query in game.  It can not be run out of the game and stored like if

we are gold, therefore it is very important to view how well this method can scale.  

Initially it took around twenty-two minutes to run this search, which is not usable in 

game.  However, subsequent runs of the same query returned much nicer results in a short

amount of time.  Initially we believed it was because of MySQL caching the file and data.

We then tried to reproduce the long run by flushing the cache.  This did not work, as our 

results still returned quickly.  It was then hypothesized that the Linux file system we were

using kept the database file in cache, and therefore could return results much more 

quickly than the initial run, therefore it must be noted that to achieve worthwhile results 

for this query the data must continuously be queried to stay in cache.  To do so, a bot may

simply do a query of any kind to keep the file in cache between games so that it does not 

fall out.  This instruction mimics the responsibility of a NOP instruction.  Since we were 

concerned about scale and how long to expect a response time, we ran the query on 
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subsequent 1/8ths of the data.

Table 6 – Query Times for the Silver Starting Position

Data Size Response Time in Seconds

1993479 1

3986958 2.3

5980437 3.49

7973916 5.34

9967395 5.58

11960874 7.17

13954353 7.40

15947465 7.96

So even with our large data set, a result can be found fairly quickly.  If we continue to 

increase our data size, and the response time becomes a legitimate concern, the query can

be changed to only query a certain size of the data.  An example of such a query is 

SELECT next_move FROM moves WHERE turn=1 AND (side='b' OR side='s') AND 

wboardstatus='rrrccrrrrhdemdhr' AND id BETWEEN X and Y

where X and Y is the span of games that wish to be searched.  Of course it is possible that

the person choosing a start position for gold chooses a position that is not in our database.
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In that event, we will choose the same position that gold has chosen, staying true in our 

attempt to mimicking behavior.  Now that we have chosen how we will align our pieces, 

we must then consider how we will move.

3.2 – Win in Two Database

In Arimaa there is an area of concentration called the “win in two” puzzle.  This 

area of study tries to determine how difficult it is for a human or a bot to realize that a 

given board state can be solved in two moves.  This area of concentration was developed 

based on the brute force abilities of modern chess programs.  To discount brute force as a 

viable option, we must develop a ceiling of search depth similar to what has been 

discovered for Chess.  If the average branching factor of a game of Chess is 35 and 

Arimaa is 17,281, then a computer that can search a depth of 8 turns per player in chess 

can not even reach 3 turns per player in Arimaa.

Figure 3 – Brute Force Depth Calculation for Arimaa (Why we love Arimaa, 2011)

With that known, seeing three moves ahead becomes too taxing of a service.  Seeing two 

moves ahead, however, is feasible and relatively quick.  Since this is an important area of 

concentration, a database was started where win in two puzzles were recorded.  The 

database can be found at http://arimaa.com/arimaa/games/puzzles.txt. The format of the 
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database is gameNumber:moveNumber winningMove.  Therefore, before we do any 

calculations, we can query our database to find out if our boardState matches any of those

in the win in two database.  If it does, then we know which move to make to secure a 

win.  To begin, we took the data from the win in two database,  parsed it, and put it into a 

database.

Table 7 – Win in Two Database Setup

Column Name Type Description

id INT Unique row identifier 
(auto_increment, unique, 
primary key)

game_id INT Game number from .txt file

turn SMALLINT What turn we are on

side ENUM(‘b’,’w’,’g’,’s’) Which side is making the 
move

boardstatus CHAR(64) The board as it looked before 
the move took place to 
analyze. 64 characters, A8-
H8,A7-H7...A1-H1. Character
representing pieces, or 
hyphen for no piece

move VARCHAR(255) Move notation for the move 
they made

Now, before we even make a move, we query this database to see if our 

representation of a board state is one that matches a board state in the database.  If it does,

then we know we have a win in two state and know which move to make.  This database 
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responds extremely fast.  A match in the database returns a result in 0.01 seconds.  A non-

match returns a result in less than that.  Given the size of the database, and the relatively 

quick response times, this portion of the program can scale to a much larger database size

with very little effect on the overall response time of our bot.

3.3 – Finding the Best Move Using the Whole Board

Now that our pieces are on the board, we must then decide how we are going to 

find the best possible move given a situation.  To get the best possible move, we will take

our current board state, expressed as a 64 character string, and try to match that board 

state with one in our database.  The algorithm for finding the best move is as follows:

function findBestMove(currentBoardState)
query database to find a match to our currentBoardState

record if the user making the next move won the match
record the user making the next moves rank
record how many moves are left in the game

if results  == 1 then
make nextMove

if results > 0 then
if results have wins

discard results that result in losses
make move by user with the highest rank
if the users have the same rank then

make move resulting in less moves left
if movesLeft are the same then
make any move left in the result set 

if results == 0 then
halfBoard(currentBoardState)

Figure 4 – Pseudocode for Matching on an Entire Board
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This algorithm will either result in a next move or result in the calling of another 

function.  Our rationale is that if we can find a board match, then we want to make sure 

that the move we are making results in a possible win.  To further make the best move we

will make the move done by the user with the highest rank.  We can further separate the 

moves by how many plays are left giving us a move that results in a quicker finish.  If 

there is no match in the database we receive a response in less than one second, which is 

good if we need more time to determine a move.  The main response time of this function

is mostly dependent upon the query in the beginning.  The query that is used to get a 

response is as follows:

SELECT IF(side=winner,1,0) AS iswinner, IF(side='w' OR side='g', wrating, brating) AS 

rating, next_move FROM moves WHERE BINARY 

boardstatus='BOARDSTATUSHERE' AND (side='GOLDORSILVER' OR 

side='WHITEORBLACK') ORDER BY iswinner DESC, rating DESC, (maxturns-turn) 

ASC

To test the response time of this function we queried the database to find a common board

state (the start state) on data sets containing subsequent 1/8th sets of data.  The term 

negligible is used when the time program returns a run-time of less than 1 second.
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Table 8 – Query Times for a Full Board State Match

Data Size Response Time in Seconds

1993479 Negligible

3986958 Negligible

5980437 Negligible

7973916 Negligible

9967395 Negligible

11960874 Negligible

13954353 1.20

15947465 1.28

The noticeable problem that we have with matching full board states is the amount of hits

that we actually get.  Our response times, even at the largest amount of data, places us in 

a spot where we still have time left over out of our 30 second allotment.  To take 

advantage of this leftover time, we will try to query a piece of the currentBoardState that 

results in more hits.  We then have to observe how we can shrink the currentBoardState to

get more results.

3.4 -Finding the Best Move Using Half the Board

In a majority of the moves that we make in our game, the focus will be on the 

middle four rows of our game board.  Since this still gives us a worthwhile amount of 

games to reference while cutting the amount of the board we need to match by half, we 

can improve the likelihood that we receive a match.  Therefore our algorithm for the 
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halfBoard function is as follows:

function halfBoard(currentBoardState)
query DB to find a boardState that matches currentBoardState’s middle 4 rows.

record if the user making the next move won the match
record the user making the next moves rank
record how many moves are left in the game

if results  == 1 then
make nextMove

if results > 0 then
if results have wins

discard results that result in losses
make move by user with the highest rank
if the users have the same rank then

make move resulting in less moves left
if movesLeft are the same then

make any move left in the result set
if results == 0 then

areaOfConcentration(currentBoardState)

Figure 5 – Pseudocode for Matching on Half a Board

Our basic algorithm stays the same, with the major change being in the query to get a 

board that matches half a board.  That query

SELECT IF(side=winner,1,0) AS iswinner, IF(side='w' OR side='g', wrating, brating) AS 

rating, next_move FROM moves WHERE boardstatus LIKE BINARY %s AND (side=

%s OR side=%s) AND turn <> 1 ORDER BY iswinner DESC, rating DESC, (maxturns-

turn) ASC
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The response time on subsequent 1/8th sets of data of this query is as follows:

Table 9 – Query Times for a Half Board State Match

Data Size Response Time in Seconds

1993479 Negligible

3986958 Negligible

5980437 Negligible

7973916 Negligible

9967395 1.3

11960874 1.36

13954353 1.42

15947465 1.8

There was an increase, but still manageable, response time even in our heaviest sets of 

data.  This is a direct relation to the amount of hits we are receiving.  We wish to increase 

our result set and still not violate our given allotment of time.  Between a full board state 

and a half board state we have enough room to make one more query.  This query will be 

called the area of concentration.
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3.5 -Finding the Best Move Based on the Area of Concentration

After playing many games of Arimaa, it is noticed that areas of concentration 

develop where all the action occurs.  This action is usually around the trap squares.  The 

following algorithm explains how to develop an area of concentration and how to decide 

which move to make.

function areaOfConcentration(currentBoardState)
note location of lastMovedPiece by the opponent.
find location of the nearest trap square to the last moved piece.
take a board state using the 5x5 grid where the trap square is the center.
all locations of the board not in the 5x5 grid mark as don’t cares

query DB to find a boardState that matches the area of concentration
record if the user making the next move won the match
record the user making the next moves rank
record how many moves are left in the game

try
if results  == 1 then

Make nextMove
if results > 0 then

if results have wins
discard results that result in losses

make move by user with the highest rank
if the users have the same rank then

make move resulting in less moves left
if movesLeft are the same then

make any move left in the result set 
catch IllegalMoveException
if results == 0 || IllegalMoveException then

areaOfConcentration(currentBoardState, pieceToMove)

Figure 6 – Pseudocode for Matching on an Area of Concentration
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This function will query our database to find a smaller version of the board state, the 5x5 

area around the trap square that we believe to be the concentrated area of movement.  The

5x5 area takes into account six squares of the 3x3 grid surrounding the two trap squares 

adjacent to the one we are interested in, and one square to the one that isn’t.  Therefore, if

we are wrong about the trap square being an area of influence, we are still taking into 

account 2/5th of the area on each of two other trap squares.  If we are completely wrong 

about the area of concentration we still receive data that could pose useful in our 

situation.  Once again the majority of the algorithm stays the same, with the changes 

occurring in the query portion.  This time we take into account certain “don’t cares” in 

our instruction.  The “don’t cares” are wild card characteristics, where our initial 

assessment of the board does not care what is in these spots because they are too far out 

of the area of concentration to have an effect on our initial determination.  We mark them 

such that the query that we use will be the same as before, but boardstatus will be 

changed such that we replace the area outside our area of influence with the MySQL 

single wild-card character ‘_’.  The response time on subsequent 1/8th sets of data of this 

query is as follows:

30



Table 10 – Query Times for an Area of Concentration

Data Size Response Time in Seconds

1993479 Negligible

3986958 Negligible

5980437 Negligible

7973916 1.8

9967395 2.3

11960874 2.48

13954353 2.68

15947465 2.8

This is the first function that we have to be careful on what our move set will be 

as it is possible for the piece that we are interested in receives a moveSet that takes it out 

of the area of concentration, thus into an area that we do not have information on.  If this 

is the case, we then run the areaOfConcentration function again where the piece that we 

moved was the lastMovedPiece.  This then gives us an appropriate view of the new area 

of influence and thus we can react with even more information.  However, in the worst 

case, we receive a move set that is illegal.  That is, the piece that we are supposed to 

move is asked to move to a space outside the area of concentration.  In this case we will 

adopt a new function using the piece we are supposed to move as the center of our area of

concentration.
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3.6 – Finding the Best Move Using Areas of Concentration With a Specific Piece

In Arimaa, pieces are weighted according to the size of the relative animal that 

they represent.  Therefore if we plan on moving a camel, we are not concerned with what 

pieces are in our way since a camel can move most of the pieces on the board.  We can 

then use the following pseudocode to find a move.

function areaOfConcentration(currentBoardState, pieceToMove)
note location of pieceToMove
take a board state using the 5x5 grid where the trap square is the center.
all locations of the board not in the 5x5 grid mark as don’t cares.
all friendly pieces will have their strength shrunk to rabbits.
all opponent's pieces of lesser strength will have their strength shrunk to rabbits
all opponent's pieces of greater strength will have their strength grown to elephants

query DB to find a boardState that matches the area of concentration
record if the user making the next move won the match
record the user making the next moves rank
record how many moves are left in the game

try
if results  == 1 then

make nextMove
if results > 0 then

if results have wins
discard results that result in losses

make move by user with the highest rank
if the users have the same rank then

make move resulting in less moves left
if movesLeft are the same then

make any move left in the result set
catch IllegalMoveException
if results == 0 || IllegalMoveException then

fallback()

Figure 7 – Pseudocode for areaOfConcentration with Regards to a Single Piece
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In all of our functions we are basically trying to match a board state that is similar

or exact to the one that we encountered.  When we reach this function we are essentially 

saying that we are approaching a point where our board state does not match any of those

in our database at any level.  It is because of this that we have decided to alter the way the

board is seen so that we can give us a more adequate response set.  First of all, we rarely 

have to care about which pieces on our side are which.  A rabbit, cat or dog in the way of 

our path generally does not matter because, if need be, we can usually move that piece 

out of the way.  Since it is mostly under our control, we will pretend that all of our pieces 

are rabbits.  When we query for a match, we are essentially saying “if a friendly piece is 

on the board, I do not care what the strength of that piece is.”  Therefore all we truly care 

about is whether or not a square is occupied by a friendly piece and strength does not 

matter.  This will improve our result set.  The second piece that we wish to add to the 

equation is the strength of the opponent's pieces.  If we are moving a camel, and an 

opponent has a piece in the way, then it does not matter if this piece is a rabbit, cat, or 

dog since our stronger piece can still control it.  In this part of the function we either 

reduce a piece to that of a rabbit meaning that we are stronger than it, or increase it to that

of an elephant showing that it is beyond our strength and therefore we can not manipulate

it.  This will then give us a better chance at receiving a hit from our query.  We can alter 

our board state such that matching will occur based on a regular expression.  Our code 

will therefore develop a regular expression based on the strength of the single piece we 

are looking to relate to.  In doing so, our response times increased because of the new 

overhead.
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Table 11 – Query Times for an AOC in Regards to a Specific Piece

Data Size Response Time in Seconds

1993479 8.03

3986958 9.89

5980437 12.89

7973916 13.95

9967395 14.17

11960874 15.96

13954353 18.54

15947465 20.03

 

This is the longest of our queries and, in turn, becomes our most problematic.  In 

our large data set we are brushing with the 20 second mark.  Since we use 2.8 seconds 

from the previous function and 1 second for the others we are looking at close to 25 

seconds used of our allotted 30 second time limit.

3.7 – The Fall Back

The duration of the final piece of our query may result in an issue with time.  It is 

because of this that we decided to input our own fall back.  Our own fall back function 

simply finds a random move and processes it.  It is a last resort function that is only to be 

called when we are sure we are going to run out of time or if our best efforts for finding a 

move have failed.  We wish to keep the calls to this function to a minimum so it is 

important that we find out how often our other functions get hits and how to improve.
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Chapter 4

Analysis and Statistics

In this section we discuss the hit rates on our various functions and whether or not

we have devised a successful approach.  These statistics were gathered through 1,000 

successful play throughs between our Bot and the current fall back two move search bot.

4.1 – Matches on Full Board

The first function we wish to know the success of is the one that tries to match on 

the full board.  The first thing that we noticed was that after the first ten moves, the 

matching on a full board state became non-existent.

  

Figure 8 – Full Board State Hit Percentage By Move Number
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The first move is the only time where a full board state match became a viable 

solution.  Luckily, this function takes a negligible amount of time to run, especially in the

case of not having a board state match.

4.2 – Matches on a Half Board

The second function, the half board approach, shows a bit of growth over the full 

board state function, but not enough growth as anticipated.

Figure 9 – Half Board State Hit Percentage By Move Number
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We are still unable to achieve a higher than 15% match rate on any of our move 

numbers.  The half board state does show a difference from the full board state in that 

there is not a full steady decline.  From move number 26-30 to 31-35 there is a rise in the 

rate of hits.  This may be due to the fact that as the game winds down more pieces 

become captured and therefore exact matches become easier to come by.

4.3 – Matches on an Area of Concentration

The area of concentration function ran around a relatively small area of the board 

where action generally takes place.  By limiting the amount of space we need to match, 

our anticipation was that we would receive more hits in our database.  We did receive 

more hits vs. the half board state, but still not up to our initial expectations.

Figure 10 – Area of Concentration Hit Percentage By Move Number
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The hit percentage starts out generally favorable but takes a sharp plunge in the 

middle of game resulting in a reduction of half the original rate.  The good news is that by

the end of the game the hit rate rockets up to 32.1%.  The downside of this data is that 

most games do not reach this point in move totals, so the odds of reaping the benefits of 

this portion of the graph are dependent entirely on the ability to survive.

4.4 – Matches on an Area of Concentration With a Specified Piece

This is the last point that try to find a match on.  In this instance we incorporate 

additional overhead due to not looking for exact matches in our query.  The additional 

overhead should come with results, and in our example it did.

Figure 11 – AOC With Specific Piece Hit Percentage By Move Number
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In this case we have a large improvement over our last graph.  Our plot infers that 

as the game progresses we are more likely to find a match, though the hit ratio between 

the top and bottom is still fairly small (12.24%).

4.5 – Overall Odds of Finding a Hit

Given our data, we have developed the following table that incorporates the given

data and shows the overall percentage of acquiring a hit on a board state if we run our 

entire function top to bottom.  Our overall hit rate is the chance that we will get a hit in 

one of our functions.  To calculate that we do the following:

A = Full Board

B = Half Board

C = Area of Concentration

D = Area of Concentration on a Single Piece

P(Just A) = P(A) * (1-P(B)) * (1-P(C)) - * (1-P(D))

P(Just B) = (1-P(A)) * (P(B)) * (1-P(C)) - * (1-P(D))

P(Just C) = (1-P(A)) * (1-P(B)) * (P(C)) - * (1-P(D))

P(Just D) = (1-P(A)) * (1-P(B)) * (1-P(C)) - * (P(D))

P(Only A, B, C, or D) = P(Just A) + P(Just B) + P(Just C) + P(Just D)

Overall Miss Rate – 1 – Overall Hit Rate

Therefore with that data we achieved the following results:
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Table 12 – Hit Rate Calculations for Each Function Vs. Move Number

Move
Number

Full Board Half Board Area of
Concentrati

on

Area of
Concentrati
on Single

Piece

Overall Hit
Rate

Overall
Miss Rate

1-5 3.63 13.83 26.82 32.86 43 57

6-10 0.904 11.06 28.32 34.8 21.99 78.01

11-15 0.13 9.82 24.12 36.82 25.16 74.84

16-20 0.13 9.65 18.49 38.4 28.24 71.76

21-25 0.13 8.46 16.37 39.38 30.11 69.89

26-30 0.13 7.41 12.87 40.12 32.32 67.68

31-35 0.13 8.42 16.3 42.18 32.29 67.71

36-40 0.13 8.41 19.98 43.15 31.58 68.42

41-45 0.13 7.03 24.82 43.16 30.13 69.88

46+ 0.13 4.06 32.1 45.1 29.34 70.66

Therefore in a given move number we are achieving a 30.416% average hit rate.  

This number is not as high as anticipated, though still high enough to hopefully prove the 

benefit of this solution against the old style solution.  It is also noteworthy that the win in 

two puzzle function is absent from the table.  This is because there were never any hits 

for the win in two puzzle function in our 1,000 games.
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4.6 – Win Rate

Our data was collected in 1,000 games played.  The following graph shows the 

win rate as we progressed through our 1,000 games.

Figure 12 – Win Rate Vs. Standard Fallback Bot

As we played our games we mostly hovered above the 65% mark.  This result is positive 

in that in a regular game of Arimaa, our bot has proven that it has the ability to defeat the 

standard fallback bot more than half the time.
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Chapter 5

Improvements and Future Research

In this section we will discuss the improvements that can be made as well as goals

in future research related to the ideas presented in this research.

5.1 – Better Win in Two Research

In our 1,000 games we did not use any puzzles in the win in two database.  The 

amount of time it takes to find a win in two puzzle is negligible, but since we did not hit 

any of these it is possible that it is wasted space.  What might perhaps be a better fit for 

the win in two database portion is a simple brute force win in two attack.  That is, instead 

of finding current win in two matches, find out if the board state you are facing is a win 

in two puzzle at all, and then decide which move to make.  This would deter from the 

idea of a 100% relational database approach, but it would result in a better move set than 

the current approach, as the current approach did not result in any moves.

5.2 – Full Board State Matches

The biggest detriment to our matching is the full board state match.  It has a quick

response time, but it mostly only results in a response in the first ten moves.  After the 

first ten moves it becomes useless.  Incorporating a move check to see what move 

number we are on to eliminate the full board function for moves 10 and on might be 

beneficial and might free up some more clock time for other functions.
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5.3 – Better Area of Concentration Algorithm

The current area of concentration algorithm is fairly primitive and could stand for 

some improvement.  Eliminating the possibility of returning a move set that can not be 

accomplished is imperative as it is wasted cycles since we must call the function over 

again.  It is beneficial to consider determining if a move set is possible before it is 

returned, therefore we can continue querying the database inside the function rather than 

restarting it entirely.

5.4 – More Games!

The benefit of using the relational database is that games can be added very 

easily.  We stopped with games almost a year before this research was handed in, 

therefore there is a whole years worth of games we could add, perhaps even adding 

games to the database as we play.  To do so we would have to do some future research on 

the scaling of adding more games.
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Chapter 6

Conclusion

The relational database fallback move generator that we developed based on this 

research shows a small improvement over the current fallback move generator with no 

detriment to the time period constraints of the game.  In 1,000 games our bot did not once

run out of its 30 second allotted time period, nor did it crash.  This speaks to the 

robustness of our solution and the readiness of the implementation.  With future research 

we may be looking at a viable alternative to be implemented in bots everywhere who 

have the resources to accommodate the database size.
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