
Design and implementation of Bonanza Method

for the Evaluation in the Game of Arimaa

Kanjanapa Thitipong, Komiya Kanako, Yoshiyuki Kotani

Department of Computer and Information Sciences,

Tokyo University of Agriculture and Technology, Naka-chou 2-24-16, Koganei, Tokyo 184-8588, Japan

Abstract – Since the bonanza method had been

discovered and proved to be required to make a strong

Japanese chess program, the idea of applying it to the

other 2-player perfect information game like Arimaa is

proposed. In order to create a strong Arimaa program,

the study aims to create the evaluation function that

enables the accurate positional evaluation by using

supervised learning algorithm called bonanza.

INTRODUCTION

 Since the computer chess program had already reached the state

of the art by beating the world champion human player in 1997, the

new game called “Arimaa” founded in 2002 by Omar Syed was

claimed to be the new way more challenge in the research of AI

game. Like chess, Arimaa, the 2-player zero-sum perfect

information game, was designed to be easy to play for human but

hard for the computer. A move in arimaa is the combination of 4

piece movement called steps. Due to Arimaa piece can only move

to the orthogonally adjacent positions, Arimaa piece move quite

slow compared to chess. Therefore, this leads Arimaa deeper in

strategy and wider in game tree search space. There are 6 types of

piece ordered by the strongest piece which are Elephant, Camel,

Horse, Dog, Cat, and Rabbit. The goal is to bring a weakest piece,

(a rabbit), to the opposite side of the board. The game also ends

when a player loses all his rabbit or when he repeatedly makes the

same move for three times. Stronger piece may pull or push the

weaker piece into trap and perform capturing.

Figure 1: Example of Arimaa Position

Practically, with the high branching factor (16,000 possible move

per position), Arimaa can be considered that it has the extremely

large search space. That means it is impossible to do a full-width

search within a limited time period. Fortunately, there was some

study on tacking the Arimaa high branching factor effectively by

using move-ordering heuristics [1]. Since 95% of expert moves

were arranged in the top first 5% of the possible move list, the

quality of alpha-beta search was proved to be more effective.

For the evaluation of Arimaa position, the variety of technique

such as hand-coded evaluation, reinforcement learning was

applied to deal with the complicated in the evaluation. However,

to evaluate position accurately, there still exist the way to

improve the evaluation using the supervised machine learning

technique called “bonanza”, which aims to evaluate the position

like the way human does.

I. RELATED WORK

A. Monte-Carlo Tree Search based Arimaa program

 Inspired from the highly effective in Computer Go, the Monte-

Carlo Tree Search (MCTS) was managed to be used as the search

algorithm in Arimaa by Tomas Kozelek [2]. The “as-is” Monte-

Carlo playouts used in Computer Go was proved to provide a

weak Arimaa player. Besides, the standard improvement in Go

such as UCT-RAVE, UCB-tuned still provided no effect to the

strength of the Arimaa program. Since the MCTS approach tends

to provide the average strength program compared with the Alpha-

Beta approach. That means the role of evaluation function was

proved to be important. So, we chose to focus on the study of the

evaluation function in Arimaa in order to create a strong Arimaa

program.

B. Alpha-Beta Pruning Tree Search based Arimaa program

 Most of the strong Arimaa program is based on the Alpha-Beta

search algorithm. Like the winner of 2011 Computer Arimaa

Championship, bot_sharp, was also the Alpha-Beta engine plus the

standard improvement effectively used in Chess like the move

ordering technique [1]. Move ordering enables the search to search

on the expert-like move first, which means that it optimized the

time usage in searching the principal variations. Bot_sharp

evaluation function was tuned by using the reinforcement machine

IPSJ SIG Technical Report
Vol.2012-GI-27 No.4

2012/3/2

learning technique. The 4 different algorithms which are TD, TD-

Leaf, Treestrap, and Rootstrap were used to perform weight

training. The work had proved that the reinforcement technique

with the Rootstrap weight training method did very well in Arimaa

and enabled the best Arimaa program. Besides, it is also proved

that there still have many ways to improve the level of game play

for the computer Arimaa. Likewise, we offered the hypothesis that

the supervised learning technique also provides the good

evaluation for Arimaa.

B. The bonanza method

 In the field of Japanese chess AI development, the bonanza

method, invented by Kunihito Hoki[3], was considered to be

indispensable for the good program. Bonanza is the name of the

supervised machine learning method that performs the evaluation

function weight training by using the expert human game play

(game record) as the training instance. The idea of the bonanza

technique is to find the objective function that can define how

advantages the move is, compared with the expert human move.

 - (1)

 Given an amount of sample data record which provides total N-1

number of recorded positions and the weight (), the objective

function returns minimum value when minimax search results

agree with the records. The function shown below describes

the actual activities of objective function .

 - (2)

 Given the position P, for each of the possible moves

the difference between evaluation value of the position and the

evaluation value of the record position is used as the input to

the function T. Where T represents the monotonic increasing

function, in this case, the sigmoid function is used. Then, given the

function l, the gradient

 is calculated to be used in the

weight training process.

 - (3)

 Where x = . The gradient is

then used as the update value in the weight training process.

 - (4)

 Where h is the learning rate, and the sign(x) function returns the

sign of x.

 The bonanza method had become the “must have” and proved to

be useful in the modern Japanese chess program. In the other game

designed to be challenge for the computer to play like Arimaa, the

effectiveness of bonanza method against the Arimaa evaluation

function will be shown in this work.

II. PROPOSED METHOD

 The idea to apply the bonanza method to improve the evaluation

function of Arimaa game was purposed for the attempt to create a

strong Arimaa program. In order to deal with the difficulty in

evaluation position in Arimaa, we suggest the evaluation function

that all the weights were automatically trained based on the

bonanza method which is hypothesized to be able to create a good

evaluation function.

 In this work, we started from the small set of feature. Only the

piece position and the piece type had been used as the feature

vector. The actual feature vector is as shown below

 The piece in Arimaa consists of 6 types and each has the

different value depended on the piece strength. The position in

Arimaa consists of 64 positions (8x8). Therefore, Total 384

features were used to create the evaluation feature.

 With these simple set of features, the program is expected to be

able to evaluate how advantage to move the piece to a position, and

the material advantage of a given position.

III. IMPLEMENTATION

A. Game Record Preparing

 The game records from the Arimaa website [4] were downloaded

and pre-processed to be able to use in evaluation function weight

training. The online game records since the game was invented are

available for download. The game record with rating more than

1800 was assumed to be a good game and being used as the

training instance.

B. Arimaa Game Engine

 In this work, the program was developed based on the program

called “Bot_Faerie [5]” available on Arimaa website to be used as a

starter Arimaa game engine. Bot_Faerie was written in C. It

consists of most of the useful features such as Generate possible

moves, simple Alpha-Beta Pruning Search, and a simple evaluation

function (material value). Besides, it also keep the position hash

value in order to avoid the search at the previously search position.

Therefore, it would be a right choice to realize evaluation function

weight training with the bonanza method based on the Bot_Faerie

engine.

C. Weight Training

 Before the weight training was performed, the initial weight was

set to the initial piece values which are 20000 for Elephant, 5000

for camel, 3000 for horses, 1800 for dogs, 1500 for cats, 1000 for

rabbits. In this work, the update was done by the policy

IPSJ SIG Technical Report
Vol.2012-GI-27 No.4

2012/3/2

 Where h is the learning rate which better be set to the small

number. In this work it was set to 10. And, the actual weight

updates was used as the weight updates instead of the sign function

used in the original work by Kunihito Hoki. The weight was

trained by using 700 recorded positions from several game records.

The result of bonanza weight training was shown in the table

below.

TABLE I

WEIGHT FOR RABBIT PIECE

881 977 941 879 990 1009 1082 1062

1133 902 1201 1066 1091 924 867 839

991 990 846 801 1035 1057 1089 993

972 1974 837 1227 993 993 860 1142

1029 986 1044 913 1086 987 986 1005

874 1020 930 871 989 868 1001 1001

1118 997 1007 1102 995 1157 1014 1006

1008 1227 835 1014 912 1020 1011 1056

TABLE II

WEIGHT FOR CAT PIECE

1500 1500 1474 1498 1500 1490 1500 1500

1500 1309 1779 1469 1472 1571 1480 1500

1500 1500 1467 1502 1495 1392 1501 1500

1500 1500 1502 1500 1505 1600 1500 1500

1500 1409 1594 1517 1459 1558 1353 1500

1500 1498 1512 1485 1629 1521 1500 1500

1500 1509 1464 1508 1507 1456 1505 1500

1500 1500 1508 1502 1500 1500 1500 1500

TABLE III

WEIGHT FOR DOG PIECE

1795 1796 1800 1800 1800 1800 1790 1793

1761 1785 1910 1794 1804 1793 1810 1829

1761 1720 1864 1814 1795 1802 1805 1629

1812 1800 1778 1829 1803 1794 1826 1935

1749 1645 1894 1790 1820 1800 1806 1802

1818 1846 1807 1822 1776 1815 1716 1755

1784 1840 1801 1799 1804 1800 1802 1906

1800 1800 1800 1800 1800 1800 1800 1800

TABLE IV

WEIGHT FOR HORSE PIECE

3000 3000 3005 3000 3000 2998 3000 3000

2994 2742 3102 2899 2998 3008 2735 3000

2748 3331 2977 3059 2996 3065 3221 3009

3080 3025 2958 3027 3011 2771 2993 3015

2978 3026 2973 3079 3132 2881 3037 2998

3036 2859 3003 2905 2998 3064 2779 3109

2862 2970 3000 3109 2994 3000 3127 2984

3000 3155 3028 2990 3000 3000 3000 3002

TABLE V

WEIGHT FOR CAMELPIECE

5000 5000 5000 5000 5000 5005 5000 5000

5000 4997 5000 4880 4875 4987 5013 4840

4994 5022 4983 5104 5122 4875 4988 5158

4998 5074 4992 4920 4950 5089 5098 5000

5000 4984 5063 5008 5088 4998 4929 5000

4997 4887 5008 4990 4788 4901 5067 5003

5000 5005 4993 5005 5132 5003 5183 5000

5003 5003 5002 5000 5000 4997 5000 5000

TABLE VI

WEIGHT FOR ELEPHANT PIECE

20000 20000 20000 20000 20000 20000 20000 20000

20000 20000 20000 19575 20024 19993 19996 20000

19898 20028 19888 20441 20039 19935 20030 19997

20000 20145 20070 20067 19908 19812 20121 20007

20000 19925 20014 19889 20050 19950 20088 19908

20000 20000 20006 20079 19903 20044 19818 20093

20000 20045 19957 20099 20107 19930 20046 20000

20000 20000 20000 20000 20001 20000 20000 20000

 The weight training result for showed in TABLE I did not

clarify the trend to move rabbit since it is generally used as the

wall to defense the goal for the long time in a game. So, the trained

weight reveals the trend for the rabbit is not to move forward. And,

this can lead to the poor effectiveness in attacking the goal.

 From TABLE II and III, Cats and dogs piece were likely to be a

defense pieces because of their weakness. The trained weights

showed the trend that cats and dogs value was relatively high when

they are next to the trap. This maybe because players usually use

cats and dogs to grant controls the trap of their own side to prevent

capturing threat when the strong pieces are attacking.

 Horses, Camels, and Elephant were classified as the attacker

class due to the strength. The result of weight training from

TABLE IV,V,VI may not obviously showed how the pieces were

likely to be moved but it can be considered that those attacking

pieces were played in the center of the board. The values of weight

on the edges of the board were not changed compared to the center.

 Since the weight training process consumes an enormous

amount of time until finish, with the specified period of time, only

few data were used for the weight training. So, the limited data

amount leads to the result which may not reveal some significant

meaning and still far from our expectation. However, we believed

that with the bonanza method, the increasing amount of data

trained will lead to the better evaluation function. Also, the more

pattern or strategy can still achievable.

D. Match Test

 After the weight training was finished, the locally arranged

Arimaa game was performed in order to test whether how the

evaluation really does and how it affects the game play.

 The original Bot_Faerie was selected to be a competitor to our

developed program. The match was performed locally with no time

IPSJ SIG Technical Report
Vol.2012-GI-27 No.4

2012/3/2

limit for thinking. On the Arimaa website, Bot_Faerie with the

alpha-beta-Search and the piece material evaluation function was

rated as the average beginner player level.

 At the start of the match, Bot_Faerie pretended to make moves

that scatter the piece to many directions. The pieces were move

into the opponent side by greatly distance. On the other hand, our

own developed program were not pretended to advance pieces

toward the opponent side, instead the pieces move like a group.

 Figure 2: The early game state Figure 3: The middle game state

 Figure 4: The late game state Figure 5: The end game state

 Unfortunately, due to our bonanza evaluation function was way

too early to be used the match result in the lost to Bot_Faerie. See

in the figure 4, the late game state of our developed program was

not really changed compared to the start position. Besides, the

rabbit pieces always stayed in own side and are not going to attack

the goal as the enemy did. Despite the poor attack, our own

developed program had done well on the defense against the

opponent rabbits. Still, with only defense, it cannot surpass the

Bot_Faerie at this time. This maybe because the weight was not

appropriated trained yet. It required more game training. We think

that given a certain amount of recorded data trained, bonanza

method can be able to evaluate position more accurately and can

surpass Bot_Faerie in the future.

IV. CONCLUSION

 The idea of the bonanza method known as the state of the art

machine learning algorithm in Japanese chess field, was studied

the possibility to apply to capable with the game of Arimaa which

required the more sophisticated evaluation function due to its deep

in strategy. The idea is to find the evaluation function that can

evaluate the quality of a move compared to the move the human

expert does. Using a set of feature, (in this work, piece position,

type) the weight of the evaluation function were trained based on

the game recorded of the professional player. The process of

training consumes time and certain amount of data in order to

create a good evaluation function.

 Using the bonanza method, the well-trained Arimaa program was

expected to be able to determine whether moving a piece to given

position is advantage or not. This includes the material advantage

and position advantage.

 With the limited time constraint, our Arimaa program using

bonanza supervised machine learning algorithm for the evaluation

was unable to win against the test program. However, with the

certain amount of game record trained we think our own developed

program can surpasses the test program and given the preferable

result using the designed feature.

 There are many ways to improve our own developed program.

For example, the feature used in the program can be extended to

the 2 pieces relationship, 3 pieces relationship. With the same set

of train data, considering relation between pieces has the higher

expectation to be way to improve the evaluation.

 Some search improvement like probcut [6], etc. can be added into

the program in order to reduce the time in searching positions by

pruning the sub tree that does not affect the minimax value.

V. REFERENCE

[1] David Jian Wu, "Move Ranking and Evaluation in the game of

Arimaa," Harvard College, Massachusetts, BA thesis 2011.

[2] Tomas Kozelek, "Method of MCTS and the game of Arimaa,"

Charles University of Prague, Czech Republic, MS thesis 2009.

[3] Kunihito Hoki, "Optimal control of minimax search result to

learn positional evaluation," 11th Game Programming

Workshop 2006, pp. 78-83, 2006.

[4] Arimaa Game Archive, Retrieve 2012/01/09, From

“www.arimaa.com/arimaa/”

[5] Arimaa Sample C Bot (bot_faerie), Retrieve 2012/01/09, From

“www.arimaa.com/arimaa/”

[6] Michael Buro, "Improving Heuristic Mini-Max Search by

Supervised Learning," Artificial Intelligence, vol. 134(1-2), pp.

85-89, 2002.

IPSJ SIG Technical Report
Vol.2012-GI-27 No.4

2012/3/2

