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Abstract – Since the bonanza method had been 

discovered and proved to be required to make a strong 

Japanese chess program, the idea of applying it to the 

other 2-player perfect information game like Arimaa is 

proposed. In order to create a strong Arimaa program, 

the study aims to create the evaluation function that 

enables the accurate positional evaluation by using 

supervised learning algorithm called bonanza. 

 

INTRODUCTION 

 Since the computer chess program had already reached the state 

of the art by beating the world champion human player in 1997, the 

new game called “Arimaa” founded in 2002 by Omar Syed was 

claimed to be the new way more challenge in the research of AI 

game. Like chess, Arimaa, the 2-player zero-sum perfect 

information game, was designed to be easy to play for human but 

hard for the computer. A move in arimaa is the combination of 4 

piece movement called steps. Due to Arimaa piece can only move 

to the orthogonally adjacent positions, Arimaa piece move quite 

slow compared to chess. Therefore, this leads Arimaa deeper in 

strategy and wider in game tree search space. There are 6 types of 

piece ordered by the strongest piece which are Elephant, Camel, 

Horse, Dog, Cat, and Rabbit. The goal is to bring a weakest piece, 

(a rabbit), to the opposite side of the board. The game also ends 

when a player loses all his rabbit or when he repeatedly makes the 

same move for three times. Stronger piece may pull or push the 

weaker piece into trap and perform capturing. 

 

Figure 1: Example of Arimaa Position 

Practically, with the high branching factor (16,000 possible move 

per position), Arimaa can be considered that it has the extremely 

large search space. That means it is impossible to do a full-width 

search within a limited time period. Fortunately, there was some 

study on tacking the Arimaa high branching factor effectively by 

using move-ordering heuristics [1]. Since 95% of expert moves 

were arranged in the top first 5% of the possible move list, the 

quality of alpha-beta search was proved to be more effective.     

For the evaluation of Arimaa position, the variety of technique 

such as hand-coded evaluation, reinforcement learning was 

applied to deal with the complicated in the evaluation. However, 

to evaluate position accurately, there still exist the way to 

improve the evaluation using the supervised machine learning 

technique called “bonanza”, which aims to evaluate the position 

like the way human does.  

 

I. RELATED WORK 

A. Monte-Carlo Tree Search based Arimaa program 

    Inspired from the highly effective in Computer Go, the Monte-

Carlo Tree Search (MCTS) was managed to be used as the search 

algorithm in Arimaa by Tomas Kozelek [2]. The “as-is” Monte-

Carlo playouts used in Computer Go was proved to provide a 

weak Arimaa player. Besides, the standard improvement in Go 

such as UCT-RAVE, UCB-tuned still provided no effect to the 

strength of the Arimaa program. Since the MCTS approach tends 

to provide the average strength program compared with the Alpha-

Beta approach. That means the role of evaluation function was 

proved to be important. So, we chose to focus on the study of the 

evaluation function in Arimaa in order to create a strong Arimaa 

program. 

B. Alpha-Beta Pruning Tree Search based Arimaa program 

    Most of the strong Arimaa program is based on the Alpha-Beta 

search algorithm. Like the winner of 2011 Computer Arimaa 

Championship, bot_sharp, was also the Alpha-Beta engine plus the 

standard improvement effectively used in Chess like the move 

ordering technique [1]. Move ordering enables the search to search 

on the expert-like move first, which means that it optimized the 

time usage in searching the principal variations. Bot_sharp 

evaluation function was tuned by using the reinforcement machine 
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learning technique. The 4 different algorithms which are TD, TD-

Leaf, Treestrap, and Rootstrap were used to perform weight 

training. The work had proved that the reinforcement technique 

with the Rootstrap weight training method did very well in Arimaa 

and enabled the best Arimaa program. Besides, it is also proved 

that there still have many ways to improve the level of game play 

for the computer Arimaa. Likewise, we offered the hypothesis that 

the supervised learning technique also provides the good 

evaluation for Arimaa.  

B. The bonanza method 

    In the field of Japanese chess AI development, the bonanza 

method, invented by Kunihito Hoki[3], was considered to be 

indispensable for the good program. Bonanza is the name of the 

supervised machine learning method that performs the evaluation 

function weight training by using the expert human game play 

(game record) as the training instance. The idea of the bonanza 

technique is to find the objective function    that can define how 

advantages the move is, compared with the expert human move.  

                               
       - (1) 

   Given an amount of sample data record which provides total N-1 

number of recorded positions and the weight ( ), the objective 

function    returns minimum value when minimax search results 

agree with the records. The function       shown below describes 

the actual activities of objective function   . 

                                    
       - (2) 

   Given the position P, for each of the possible moves               

the difference between evaluation value of the position    and the 

evaluation value of the record position     is used as the input to 

the function T. Where T represents the monotonic increasing 

function, in this case, the sigmoid function is used. Then, given the 

function l, the gradient 
          

  
 is calculated to be used in the 

weight training process. 

          

  
                                - (3) 

   Where x =                       . The gradient is 

then used as the update value in the weight training process. 

                 
          

  
    - (4) 

   Where h is the learning rate, and the sign(x) function returns the 

sign of x.  

   The bonanza method had become the “must have” and proved to 

be useful in the modern Japanese chess program. In the other game 

designed to be challenge for the computer to play like Arimaa, the 

effectiveness of bonanza method against the Arimaa evaluation 

function will be shown in this work. 

 

II. PROPOSED METHOD 

   The idea to apply the bonanza method to improve the evaluation 

function of Arimaa game was purposed for the attempt to create a 

strong Arimaa program. In order to deal with the difficulty in 

evaluation position in Arimaa, we suggest the evaluation function 

that all the weights were automatically trained based on the 

bonanza method which is hypothesized to be able to create a good 

evaluation function. 

    In this work, we started from the small set of feature. Only the 

piece position and the piece type had been used as the feature 

vector. The actual feature vector is as shown below 

                                            

    The piece in Arimaa consists of 6 types and each has the 

different value depended on the piece strength. The position in 

Arimaa consists of 64 positions (8x8). Therefore, Total 384 

features were used to create the evaluation feature. 

    With these simple set of features, the program is expected to be 

able to evaluate how advantage to move the piece to a position, and 

the material advantage of a given position.  

 

III. IMPLEMENTATION 

A. Game Record Preparing 

    The game records from the Arimaa website [4] were downloaded 

and pre-processed to be able to use in evaluation function weight 

training. The online game records since the game was invented are 

available for download. The game record with rating more than 

1800 was assumed to be a good game and being used as the 

training instance.  

B. Arimaa Game Engine 

    In this work, the program was developed based on the program 

called “Bot_Faerie [5]” available on Arimaa website to be used as a 

starter Arimaa game engine. Bot_Faerie was written in C. It 

consists of most of the useful features such as Generate possible 

moves, simple Alpha-Beta Pruning Search, and a simple evaluation 

function (material value). Besides, it also keep the position hash 

value in order to avoid the search at the previously search position. 

Therefore, it would be a right choice to realize evaluation function 

weight training with the bonanza method based on the Bot_Faerie 

engine.  

C. Weight Training  

    Before the weight training was performed, the initial weight was 

set to the initial piece values which are 20000 for Elephant, 5000 

for camel, 3000 for horses, 1800 for dogs, 1500 for cats, 1000 for 

rabbits. In this work, the update was done by the policy  
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    Where h is the learning rate which better be set to the small 

number. In this work it was set to 10. And, the actual weight 

updates was used as the weight updates instead of the sign function 

used in the original work by Kunihito Hoki. The weight was 

trained by using 700 recorded positions from several game records.   

The result of bonanza weight training was shown in the table 

below. 

TABLE I                                                                                

WEIGHT FOR RABBIT PIECE 

881 977 941 879 990 1009 1082 1062 

1133 902 1201 1066 1091 924 867 839 

991 990 846 801 1035 1057 1089 993 

972 1974 837 1227 993 993 860 1142 

1029 986 1044 913 1086 987 986 1005 

874 1020 930 871 989 868 1001 1001 

1118 997 1007 1102 995 1157 1014 1006 

1008 1227 835 1014 912 1020 1011 1056 

 

TABLE II                                                                               

WEIGHT FOR CAT PIECE 

1500 1500 1474 1498 1500 1490 1500 1500 

1500 1309 1779 1469 1472 1571 1480 1500 

1500 1500 1467 1502 1495 1392 1501 1500 

1500 1500 1502 1500 1505 1600 1500 1500 

1500 1409 1594 1517 1459 1558 1353 1500 

1500 1498 1512 1485 1629 1521 1500 1500 

1500 1509 1464 1508 1507 1456 1505 1500 

1500 1500 1508 1502 1500 1500 1500 1500 

 

TABLE III                                                                               

WEIGHT FOR DOG PIECE 

1795 1796 1800 1800 1800 1800 1790 1793 

1761 1785 1910 1794 1804 1793 1810 1829 

1761 1720 1864 1814 1795 1802 1805 1629 

1812 1800 1778 1829 1803 1794 1826 1935 

1749 1645 1894 1790 1820 1800 1806 1802 

1818 1846 1807 1822 1776 1815 1716 1755 

1784 1840 1801 1799 1804 1800 1802 1906 

1800 1800 1800 1800 1800 1800 1800 1800 

 

TABLE IV                                                                              

WEIGHT FOR HORSE PIECE 

3000 3000 3005 3000 3000 2998 3000 3000 

2994 2742 3102 2899 2998 3008 2735 3000 

2748 3331 2977 3059 2996 3065 3221 3009 

3080 3025 2958 3027 3011 2771 2993 3015 

2978 3026 2973 3079 3132 2881 3037 2998 

3036 2859 3003 2905 2998 3064 2779 3109 

2862 2970 3000 3109 2994 3000 3127 2984 

3000 3155 3028 2990 3000 3000 3000 3002 

 

 

 

TABLE V                                                                               

WEIGHT FOR CAMELPIECE 

5000 5000 5000 5000 5000 5005 5000 5000 

5000 4997 5000 4880 4875 4987 5013 4840 

4994 5022 4983 5104 5122 4875 4988 5158 

4998 5074 4992 4920 4950 5089 5098 5000 

5000 4984 5063 5008 5088 4998 4929 5000 

4997 4887 5008 4990 4788 4901 5067 5003 

5000 5005 4993 5005 5132 5003 5183 5000 

5003 5003 5002 5000 5000 4997 5000 5000 

 

TABLE VI                                                                              

WEIGHT FOR ELEPHANT PIECE 

20000 20000 20000 20000 20000 20000 20000 20000 

20000 20000 20000 19575 20024 19993 19996 20000 

19898 20028 19888 20441 20039 19935 20030 19997 

20000 20145 20070 20067 19908 19812 20121 20007 

20000 19925 20014 19889 20050 19950 20088 19908 

20000 20000 20006 20079 19903 20044 19818 20093 

20000 20045 19957 20099 20107 19930 20046 20000 

20000 20000 20000 20000 20001 20000 20000 20000 

 

    The weight training result for showed in TABLE I did not 

clarify the trend to move rabbit since it is generally used as the 

wall to defense the goal for the long time in a game. So, the trained 

weight reveals the trend for the rabbit is not to move forward. And, 

this can lead to the poor effectiveness in attacking the goal. 

    From TABLE II and III, Cats and dogs piece were likely to be a 

defense pieces because of their weakness. The trained weights 

showed the trend that cats and dogs value was relatively high when 

they are next to the trap. This maybe because players usually use 

cats and dogs to grant controls the trap of their own side to prevent 

capturing threat when the strong pieces are attacking.  

    Horses, Camels, and Elephant were classified as the attacker 

class due to the strength. The result of weight training from 

TABLE IV,V,VI may not obviously showed how the pieces were 

likely to be moved but it can be considered that those attacking 

pieces were played in the center of the board. The values of weight 

on the edges of the board were not changed compared to the center.  

    Since the weight training process consumes an enormous 

amount of time until finish, with the specified period of time, only 

few data were used for the weight training. So, the limited data 

amount leads to the result which may not reveal some significant 

meaning and still far from our expectation. However, we believed 

that with the bonanza method, the increasing amount of data 

trained will lead to the better evaluation function. Also, the more 

pattern or strategy can still achievable.  

D. Match Test 

    After the weight training was finished, the locally arranged 

Arimaa game was performed in order to test whether how the 

evaluation really does and how it affects the game play.  

    The original Bot_Faerie was selected to be a competitor to our 

developed program. The match was performed locally with no time 
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limit for thinking. On the Arimaa website, Bot_Faerie with the 

alpha-beta-Search and the piece material evaluation function was 

rated as the average beginner player level.  

    At the start of the match, Bot_Faerie pretended to make moves 

that scatter the piece to many directions. The pieces were move 

into the opponent side by greatly distance. On the other hand, our 

own developed program were not pretended to advance pieces 

toward the opponent side, instead the pieces move like a group.  

 

  

 Figure 2: The early game state    Figure 3: The middle game state 

  

   Figure 4: The late game state     Figure 5: The end game state 

    Unfortunately, due to our bonanza evaluation function was way 

too early to be used the match result in the lost to Bot_Faerie. See 

in the figure 4, the late game state of our developed program was 

not really changed compared to the start position. Besides, the 

rabbit pieces always stayed in own side and are not going to attack 

the goal as the enemy did.  Despite the poor attack, our own 

developed program had done well on the defense against the 

opponent rabbits. Still, with only defense, it cannot surpass the 

Bot_Faerie at this time. This maybe because the weight was not 

appropriated trained yet. It required more game training. We think 

that given a certain amount of recorded data trained, bonanza 

method can be able to evaluate position more accurately and can 

surpass Bot_Faerie in the future.  

 

IV. CONCLUSION 

    The idea of the bonanza method known as the state of the art 

machine learning algorithm in Japanese chess field, was studied 

the possibility to apply to capable with the game of Arimaa which 

required the more sophisticated evaluation function due to its deep 

in strategy. The idea is to find the evaluation function that can 

evaluate the quality of a move compared to the move the human 

expert does. Using a set of feature, (in this work, piece position, 

type) the weight of the evaluation function were trained based on 

the game recorded of the professional player. The process of 

training consumes time and certain amount of data in order to 

create a good evaluation function.  

   Using the bonanza method, the well-trained Arimaa program was 

expected to be able to determine whether moving a piece to given 

position is advantage or not. This includes the material advantage 

and position advantage. 

   With the limited time constraint, our Arimaa program using 

bonanza supervised machine learning algorithm for the evaluation 

was unable to win against the test program. However, with the 

certain amount of game record trained we think our own developed 

program can surpasses the test program and given the preferable 

result using the designed feature. 

    There are many ways to improve our own developed program. 

For example, the feature used in the program can be extended to 

the 2 pieces relationship, 3 pieces relationship. With the same set 

of train data, considering relation between pieces has the higher 

expectation to be way to improve the evaluation. 

    Some search improvement like probcut [6], etc. can be added into 

the program in order to reduce the time in searching positions by 

pruning the sub tree that does not affect the minimax value.  
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