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Abstract 

In this paper, we describe our work on ranking moves in the game Arimaa. We first discuss the various models 
that we used—Naive Bayes, an L2-regularization L2-loss SVM with a linear kernel, and L1 and L2 logistic 
regression—in order to rank moves based on “expertness”. This was done with the goal of pruning an 
exploration of the game-tree. We found that the SVM model, on average, ranked 67% of expert moves within 
the top 10% of all possible moves. Other models exhibited comparable performance. While these preliminary 
results are promising, the models all suffered from high bias, probably due to a limited feature set. The paper 
ends with future approaches to improve our existing models. 
 

I. Introduction 

Arimaa is a two-player board game played on an 8x8 
grid, with players controlling 16 pieces each (similar to 
Chess). For more details on Arimaa gameplay, see the 
rules.1 The game was designed to be difficult for 
computers to play but not (particularly) difficult for 
humans to learn and play.2 This human-bot discrepancy 
stems in part from the game’s enormous branching 
factor. Researchers have estimated an average of 16064 
distinct legal moves per turn, as well as an average total 
of 46 turns per game.3 The game-tree complexity is 

estimated to be on the order of       (compared to 

      in Chess and       in Go).3 As a result, brute 
force game-tree traversals are severely limited in terms 
of depth of exploration.  

II. Related Work 

Much of the prior work on building AIs for Arimaa 
finds optimal moves using game-tree search algorithms 
(for example, alpha-beta search and Monte Carlo Tree 
Search).3 However, to date, there has been only one 
documented major effort to apply machine learning to 
Arimaa. This work, presented by researcher David Wu 
as his honors thesis at Harvard, applies machine 
learning to rank all possible moves given a board state3 
and serves as the foundation for our project. 

David Wu’s model scores possible moves based on an 
evaluation function; as such, it implements move 
ordering rather than move classification. Moves are ranked 
by “expertness”—i.e. the likelihood that an expert 
would play the move—and the model uses this move 
ranking to prune the exploration of the search tree. So 
instead of searching the game-tree for all possible 
moves that can be played, his model does the 
following:  

1. Order all possible moves by expertness 
2. Select the most expert (for example, 5%) of all 

possible moves 
3. Search the game-tree only for those top 5% of 

moves using alpha-beta pruning 

While our machine learning approach draws from 
David Wu’s work, our code is built upon an existing 
Arimaa bot (bot_Clueless) developed in Java by Jeff 
Bacher.4 The “starter code” provides functionality to 
interpret game boards, manage updating boards with 
moves, and generate all possible moves from a given 
board state. 

III. Data Management 

Since 2002, more than 278,000 games have been 
recorded on the Arimaa website, all in a parse-able text 
format.5 This format works well for linear scans of all 
the data but is cumbersome for more complex queries 
(such as filtering for games in which both players are 
experts). For ease of querying, we parsed and loaded 
the game data into a MySQL database, enabling us to 
easily execute arbitrary queries.  

We hosted the MySQL server on Amazon’s RDS so 
that parallel jobs on multiple machines could freely 
access the game data.  

IV. Scalability  

Computation time: We ran multiple evaluations of 
our model using training sets of different sizes, and 
each run took around 2 minutes per game. To speed up 
these evaluations, we parallelized our tasks using 
Stanford’s FarmShare computing resources (corn and 
barley).  

Memory: When training the SVM model, all feature 
vectors are required to be held in memory. Because of 
the large branching factor in Arimaa, each trained move 
corresponds to thousands of training examples and 
resulting feature vectors: 1 for the expert move and on 
average 16,000 for non-expert moves. This resulted in 
about 1 GB of text data for every 10 games, despite a 
sparse representation of feature vectors. Loading these 
into memory translated to approximately 3 - 5 GB of 
RAM for every 10 games when running the C version 
of LIBLINEAR.6 Since a typical laptop does not meet 
these RAM requirements, we used Stanford’s barley 
computing machines to allow us to evaluate training set 
sizes of up to 100 games.       
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V. Implementation of Features 

The features implemented are inspired by David Wu’s 
work on Arimaa.3 In order to characterize the 
“expertness” of a move, the resulting board is mapped 
onto a feature space composed of features of the 
board. These features were chosen to correlate with 
how strong a move is. 

In order to reduce redundancy in our feature set, we 
exploited the left-right symmetry of the Arimaa board to 
cut the number of location-based features in half 
(giving only 32 mirroring locations instead of 64). 
Furthermore, we denoted a piece’s type as the number 
of stronger opponent pieces on the board (since this is 
a more meaningful encoding than absolute piece 
strength). We have implemented the following feature 
classes: 

1. Position and Movements 
2. Trap Status 
3. Freezing Status 
4. Stepping on Traps 
5. *Goal Threats 
6. *Capture Threats 
7. *Correlation with Previous Moves 

Due to impractically long computation times, the 
starred (*) features were eventually not considered 
when training and testing our learning models. For 
future work, optimizations (involving significant 
rewriting) could be made to Bacher’s game-logic code 
to make computing these features feasible. 

For details on each feature, please refer to David Wu’s 
paper.3 

VI. Naive Bayes Model 

In order to “quickly” implement a baseline and gain 
some insight into the problem, we built a variation of 
the Naive Bayes classifier. We used a multivariate 
Bernoulli event model coupled with Laplace 
smoothing. 

Methodology 

Our implementation slightly modified the traditional 
Naive Bayes classifier because we are dealing with 
move ordering rather than move classification. As such, 
instead of classifying a given move (denoted by feature 

vector  ) as expert or non-expert (    or   
respectively), our Naive Bayes model output the log of 

the posterior odds of  , as shown below. We used this 
value as a “score” for a move and ordered all possible 
moves according to this score (in descending order). 

The ordering function   is given by 

 ( )     (
 (   | )

 (   | )
)    {   }     

In order to evaluate our model, we used cross-
validation by training on 70% of the data and testing on 
30%. In order to train only on expert human moves, 
we only considered games in which both players’ ELO 
ratings were above 2100.  (This still left 5,020 of the 
278,000 total games as potential training candidates.) 

Training: 

During the training phase, we performed the following 
algorithm (written below in pseudocode): 

for each game in the training data: 
  for each board position in the game: 

1. Generate all possible legal moves, including the 
“expert” move actually played in the game 

2. Extract feature vectors for all of these moves 
3. Update a table that holds the frequency of 

occurrences for each feature (for     and 

   ) 
 
We then converted these frequencies into log-
likelihoods, which we used in the testing phase. 

Testing: 

We used the following two metrics to evaluate the 
success of our model on the training and testing data 
sets: 

1. The average percentile of the expert move 
among all possible moves after ordering. This 
describes the average percentage of moves 
that were ranked below the expert move.  

2. The proportion of expert moves that rank in 
the top X percent of all possible moves, for 
different values of X.  
 

We trained and tested our model on randomized 
example sets of different sizes. We calculated the first 
metric on both our training and our testing sets in 
order to generate learning curves.  

Results and Discussion 

Figure 1 shows the Naive Bayes model’s learning 
curves for the first of our metrics. We tested our 

hypothesis four times on each of {           } 
games to produce the trial averages shown below: 
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In order to measure not just the average percentile but 
also the consistency with which the model ranks expert 
moves highly, we plotted the histogram shown in 
Figure 2. The histogram shows expert move percentiles 
along with an added dimension: move number within 
the game. The plot was generated by running 3 Naive 
Bayes trials (each of which was trained and tested on 
125 games). We see that the Naive Bayes model ranks 
the expert moves more highly in the beginning of the 
game (for about the first 10 moves marked in dark 
green) than it does for the middle- and end-game, 
where the distribution flattens. 

We hypothesize that the features implemented tend to 
capture the qualities of a good move more for the 

beginning-game than for the end-game. Features not 
considered (such as testing for goal and capture 
threats), which come into play later on in the game, 
might improve the middle- and end-game performance.  

Another possible contributor to the poorer 
performance on end-game moves could be the 
underrepresentation of these moves in the data set. As 
the move number within a game increases, fewer and 
fewer games actually contain data for these points 
(many games end before, say, the 50th move). This 
means our model has more data from which to learn at 
the beginning of the game; this may partly explain the 
model’s stronger performance on early moves in the 
game. 

VII. LIBLINEAR Models 

Given the high bias evident in the Naive Bayes 
assumption, we wanted to evaluate the performance of 
other models. 

Methodology 

We trained SVM and logistic regression models. In 
particular, we compared 3 different models: L2-
regularized L2-loss SVM, L1 logistic regression, and L2 
logistic regression.  

We also tried to compare SVM with different kernels 
using LIBSVM7, but due to our large training set size, 
the training time for LIBSVM was orders of magnitude 
longer than for LIBLINEAR (e.g., over 2 days for 
LIBSVM versus 10 - 20 minutes for LIBLINEAR). As 
a result, we chose LIBLINEAR. 

Training: 

In generating SVM and logistic regression models, we 
addressed the following three concerns. 

Performance (memory use and computation time). While our 
feature extraction and evaluation harness code is in 
Java, we used the C version of LIBLINEAR for model 
generation to improve performance. 

High ratio of negative to positive training examples. Due to the 
high branching factor in Arimaa, this ratio is on the 
order of 16,000 non-expert moves to 1 expert move. 
To help address this imbalance and to extract features 
from expert and non-expert moves more equally, we 
randomly discarded 95% of all non-expert moves. This 
improved performance and allowed us to train and test 
on more games.  

Tuning model parameters. We cross-validated different 

values of the SVM parameter 

  {                 }, observing similar results 

for   {        } and poorer results as   was 

increased above   . We also examined different 

weights for the expert and non-expert classes to further 

Figure 1: These curves follow the expected behavior 
for a high bias model. We see that these plots will 
converge to an average percentile of 86%. We will 
need to implement more features to decrease bias. 

Figure 2: This plot compares the number of moves 
played within a game and the percentile of the 
expert moves vs. the proportion of expert moves. 
We discretize the number of moves played into 
buckets of 10 moves. We also discretized the 
percentile in buckets of 10%, where the displayed 
percentile is the average value of the bucket. 
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address the disproportion of non-expert moves. 

Different weights produced very similar results to 

LIBLINEAR’s default weight ratio of 1:1. 

Testing: 

In computing our ordering of moves, we used the 
margins for SVM and probabilities of the sigmoid 
function for logistic regression.  

Results and Discussion 

We see in Figure 3 that after we randomly discard 95% 
of the non-expert moves, the models converge to 
around the 90th percentile after about 250 games. 
Interestingly, without discarding any non-expert moves, 
the models converge to the same percentile but after 
100 games (not shown here).  

 

In terms of the number of feature vectors considered 
before reaching convergence, discarding 95% requires 
fewer vectors. This permits shorter computation times 
to attain similar results, with the caveat of requiring 
more games in the database. 

For analytical purposes, we also plotted the proportion 
of expert moves that were evaluated above a given 
percentile. This creates a plot (see Figure 4) that reads 

very similarly to a CDF. In other words, the  -value 

corresponding with, for example,         
represents the percentage of expert moves that our 
model classified in the top 10% of our move ordering. 

One takeaway from this analysis is that, if we limited a 
search of the game-tree to the top 10% of the move 
ordering, then we would examine an expert move 67% 
of the time (when using SVM or logistic regression 
models).  

 

Figure 5 was generated by running 3 trials, training on 
500 games and testing on 250 games. Though the plot 
was generated and displayed only for the SVM model, 
it was very similar to that of the logistic regression 
model.  

Similarly to the Naive Bayes histogram, we see that the 
proportion of expert moves ranked highly is largest for 
the beginning moves of the game. This reinforces our 
hypothesis that the features currently implemented 
capture essential qualities in early-game moves. 

Figure 3: The above learning curves show that the 
SVM and logistic regression models similarly 
suffer from high bias. The average percentiles of 
the expert moves converge to about 90%, only 
marginally better than the Naive Bayes average of 
86%. 

Figure 4: The SVM and logistic regression models 
had similar performance, both faring moderately 
better than the Naive Bayes (not shown) model. 
They both ranked 67% of expert moves in the top 
10%, whereas Naive Bayes ranked 58% of expert 
moves in the top 10%. 

Figure 5: Similarly to Naive Bayes, there is a trend 
that expert moves closer to the beginning of the 
game are ranked more highly. (In general, the 
SVM model outperforms Naive Bayes). 
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VIII. Future Work 

Hard Negative Mining 

In deciding our training set of negative examples, we 
have two objectives:  

1. Minimize memory requirements and 
computation time by considering only a 
subset of negative examples at a given point in 
time. (Currently, we are discarding 95% of the 
data in order to boost SVM training speed.) 

2. Retain “useful” information in negative 
examples. 

Hard Negative Mining can potentially achieve these 
dual objectives. One could first pick a random subset 
of the negative examples and run a model such as 
SVM. The model would then be retrained on the 
negative examples classified most poorly along with an 
additional random subset of the data. This step-wise 
training could be repeated until convergence without 
particularly high memory demands. 

Time Based Features 

As we hypothesized from the move vs. percentile plots, 
adding more features to capture qualities of end-game 
moves might be helpful. However, it could also be 
interesting to see what features are relevant based on 
the number of moves currently made in the game. For 
example, looking for goal threats may not be as 
insightful at the beginning of the game as it would be at 
the end of the game. In order to learn which features 
are important at each time step of a game, one could 
perform feature selection specific to each time step and 
choose the most relevant features accordingly. 
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