
1

Move Ranking in Arimaa

Arzav Jain, Neema Ebrahim-Zadeh, Vasanth Mohan, Vivek Choksi
Stanford University

Abstract

In this paper, we describe our work on ranking moves in the game Arimaa. We first discuss the various models
that we used—Naive Bayes, an L2-regularization L2-loss SVM with a linear kernel, and L1 and L2 logistic
regression—in order to rank moves based on “expertness”. This was done with the goal of pruning an
exploration of the game-tree. We found that the SVM model, on average, ranked 67% of expert moves within
the top 10% of all possible moves. Other models exhibited comparable performance. While these preliminary
results are promising, the models all suffered from high bias, probably due to a limited feature set. The paper
ends with future approaches to improve our existing models.

I. Introduction

Arimaa is a two-player board game played on an 8x8
grid, with players controlling 16 pieces each (similar to
Chess). For more details on Arimaa gameplay, see the
rules.1 The game was designed to be difficult for
computers to play but not (particularly) difficult for
humans to learn and play.2 This human-bot discrepancy
stems in part from the game’s enormous branching
factor. Researchers have estimated an average of 16064
distinct legal moves per turn, as well as an average total
of 46 turns per game.3 The game-tree complexity is

estimated to be on the order of (compared to

 in Chess and in Go).3 As a result, brute
force game-tree traversals are severely limited in terms
of depth of exploration.

II. Related Work

Much of the prior work on building AIs for Arimaa
finds optimal moves using game-tree search algorithms
(for example, alpha-beta search and Monte Carlo Tree
Search).3 However, to date, there has been only one
documented major effort to apply machine learning to
Arimaa. This work, presented by researcher David Wu
as his honors thesis at Harvard, applies machine
learning to rank all possible moves given a board state3
and serves as the foundation for our project.

David Wu’s model scores possible moves based on an
evaluation function; as such, it implements move
ordering rather than move classification. Moves are ranked
by “expertness”—i.e. the likelihood that an expert
would play the move—and the model uses this move
ranking to prune the exploration of the search tree. So
instead of searching the game-tree for all possible
moves that can be played, his model does the
following:

1. Order all possible moves by expertness
2. Select the most expert (for example, 5%) of all

possible moves
3. Search the game-tree only for those top 5% of

moves using alpha-beta pruning

While our machine learning approach draws from
David Wu’s work, our code is built upon an existing
Arimaa bot (bot_Clueless) developed in Java by Jeff
Bacher.4 The “starter code” provides functionality to
interpret game boards, manage updating boards with
moves, and generate all possible moves from a given
board state.

III. Data Management

Since 2002, more than 278,000 games have been
recorded on the Arimaa website, all in a parse-able text
format.5 This format works well for linear scans of all
the data but is cumbersome for more complex queries
(such as filtering for games in which both players are
experts). For ease of querying, we parsed and loaded
the game data into a MySQL database, enabling us to
easily execute arbitrary queries.

We hosted the MySQL server on Amazon’s RDS so
that parallel jobs on multiple machines could freely
access the game data.

IV. Scalability

Computation time: We ran multiple evaluations of
our model using training sets of different sizes, and
each run took around 2 minutes per game. To speed up
these evaluations, we parallelized our tasks using
Stanford’s FarmShare computing resources (corn and
barley).

Memory: When training the SVM model, all feature
vectors are required to be held in memory. Because of
the large branching factor in Arimaa, each trained move
corresponds to thousands of training examples and
resulting feature vectors: 1 for the expert move and on
average 16,000 for non-expert moves. This resulted in
about 1 GB of text data for every 10 games, despite a
sparse representation of feature vectors. Loading these
into memory translated to approximately 3 - 5 GB of
RAM for every 10 games when running the C version
of LIBLINEAR.6 Since a typical laptop does not meet
these RAM requirements, we used Stanford’s barley
computing machines to allow us to evaluate training set
sizes of up to 100 games.

2

V. Implementation of Features

The features implemented are inspired by David Wu’s
work on Arimaa.3 In order to characterize the
“expertness” of a move, the resulting board is mapped
onto a feature space composed of features of the
board. These features were chosen to correlate with
how strong a move is.

In order to reduce redundancy in our feature set, we
exploited the left-right symmetry of the Arimaa board to
cut the number of location-based features in half
(giving only 32 mirroring locations instead of 64).
Furthermore, we denoted a piece’s type as the number
of stronger opponent pieces on the board (since this is
a more meaningful encoding than absolute piece
strength). We have implemented the following feature
classes:

1. Position and Movements
2. Trap Status
3. Freezing Status
4. Stepping on Traps
5. *Goal Threats
6. *Capture Threats
7. *Correlation with Previous Moves

Due to impractically long computation times, the
starred (*) features were eventually not considered
when training and testing our learning models. For
future work, optimizations (involving significant
rewriting) could be made to Bacher’s game-logic code
to make computing these features feasible.

For details on each feature, please refer to David Wu’s
paper.3

VI. Naive Bayes Model

In order to “quickly” implement a baseline and gain
some insight into the problem, we built a variation of
the Naive Bayes classifier. We used a multivariate
Bernoulli event model coupled with Laplace
smoothing.

Methodology

Our implementation slightly modified the traditional
Naive Bayes classifier because we are dealing with
move ordering rather than move classification. As such,
instead of classifying a given move (denoted by feature

vector) as expert or non-expert (or
respectively), our Naive Bayes model output the log of

the posterior odds of , as shown below. We used this
value as a “score” for a move and ordered all possible
moves according to this score (in descending order).

The ordering function is given by

 () (
 (|)

 (|)
) { }

In order to evaluate our model, we used cross-
validation by training on 70% of the data and testing on
30%. In order to train only on expert human moves,
we only considered games in which both players’ ELO
ratings were above 2100. (This still left 5,020 of the
278,000 total games as potential training candidates.)

Training:

During the training phase, we performed the following
algorithm (written below in pseudocode):

for each game in the training data:
 for each board position in the game:

1. Generate all possible legal moves, including the
“expert” move actually played in the game

2. Extract feature vectors for all of these moves
3. Update a table that holds the frequency of

occurrences for each feature (for and

)

We then converted these frequencies into log-
likelihoods, which we used in the testing phase.

Testing:

We used the following two metrics to evaluate the
success of our model on the training and testing data
sets:

1. The average percentile of the expert move
among all possible moves after ordering. This
describes the average percentage of moves
that were ranked below the expert move.

2. The proportion of expert moves that rank in
the top X percent of all possible moves, for
different values of X.

We trained and tested our model on randomized
example sets of different sizes. We calculated the first
metric on both our training and our testing sets in
order to generate learning curves.

Results and Discussion

Figure 1 shows the Naive Bayes model’s learning
curves for the first of our metrics. We tested our

hypothesis four times on each of { }
games to produce the trial averages shown below:

3

In order to measure not just the average percentile but
also the consistency with which the model ranks expert
moves highly, we plotted the histogram shown in
Figure 2. The histogram shows expert move percentiles
along with an added dimension: move number within
the game. The plot was generated by running 3 Naive
Bayes trials (each of which was trained and tested on
125 games). We see that the Naive Bayes model ranks
the expert moves more highly in the beginning of the
game (for about the first 10 moves marked in dark
green) than it does for the middle- and end-game,
where the distribution flattens.

We hypothesize that the features implemented tend to
capture the qualities of a good move more for the

beginning-game than for the end-game. Features not
considered (such as testing for goal and capture
threats), which come into play later on in the game,
might improve the middle- and end-game performance.

Another possible contributor to the poorer
performance on end-game moves could be the
underrepresentation of these moves in the data set. As
the move number within a game increases, fewer and
fewer games actually contain data for these points
(many games end before, say, the 50th move). This
means our model has more data from which to learn at
the beginning of the game; this may partly explain the
model’s stronger performance on early moves in the
game.

VII. LIBLINEAR Models

Given the high bias evident in the Naive Bayes
assumption, we wanted to evaluate the performance of
other models.

Methodology

We trained SVM and logistic regression models. In
particular, we compared 3 different models: L2-
regularized L2-loss SVM, L1 logistic regression, and L2
logistic regression.

We also tried to compare SVM with different kernels
using LIBSVM7, but due to our large training set size,
the training time for LIBSVM was orders of magnitude
longer than for LIBLINEAR (e.g., over 2 days for
LIBSVM versus 10 - 20 minutes for LIBLINEAR). As
a result, we chose LIBLINEAR.

Training:

In generating SVM and logistic regression models, we
addressed the following three concerns.

Performance (memory use and computation time). While our
feature extraction and evaluation harness code is in
Java, we used the C version of LIBLINEAR for model
generation to improve performance.

High ratio of negative to positive training examples. Due to the
high branching factor in Arimaa, this ratio is on the
order of 16,000 non-expert moves to 1 expert move.
To help address this imbalance and to extract features
from expert and non-expert moves more equally, we
randomly discarded 95% of all non-expert moves. This
improved performance and allowed us to train and test
on more games.

Tuning model parameters. We cross-validated different

values of the SVM parameter

 { }, observing similar results

for { } and poorer results as was

increased above . We also examined different

weights for the expert and non-expert classes to further

Figure 1: These curves follow the expected behavior
for a high bias model. We see that these plots will
converge to an average percentile of 86%. We will
need to implement more features to decrease bias.

Figure 2: This plot compares the number of moves
played within a game and the percentile of the
expert moves vs. the proportion of expert moves.
We discretize the number of moves played into
buckets of 10 moves. We also discretized the
percentile in buckets of 10%, where the displayed
percentile is the average value of the bucket.

4

address the disproportion of non-expert moves.

Different weights produced very similar results to

LIBLINEAR’s default weight ratio of 1:1.

Testing:

In computing our ordering of moves, we used the
margins for SVM and probabilities of the sigmoid
function for logistic regression.

Results and Discussion

We see in Figure 3 that after we randomly discard 95%
of the non-expert moves, the models converge to
around the 90th percentile after about 250 games.
Interestingly, without discarding any non-expert moves,
the models converge to the same percentile but after
100 games (not shown here).

In terms of the number of feature vectors considered
before reaching convergence, discarding 95% requires
fewer vectors. This permits shorter computation times
to attain similar results, with the caveat of requiring
more games in the database.

For analytical purposes, we also plotted the proportion
of expert moves that were evaluated above a given
percentile. This creates a plot (see Figure 4) that reads

very similarly to a CDF. In other words, the -value

corresponding with, for example,
represents the percentage of expert moves that our
model classified in the top 10% of our move ordering.

One takeaway from this analysis is that, if we limited a
search of the game-tree to the top 10% of the move
ordering, then we would examine an expert move 67%
of the time (when using SVM or logistic regression
models).

Figure 5 was generated by running 3 trials, training on
500 games and testing on 250 games. Though the plot
was generated and displayed only for the SVM model,
it was very similar to that of the logistic regression
model.

Similarly to the Naive Bayes histogram, we see that the
proportion of expert moves ranked highly is largest for
the beginning moves of the game. This reinforces our
hypothesis that the features currently implemented
capture essential qualities in early-game moves.

Figure 3: The above learning curves show that the
SVM and logistic regression models similarly
suffer from high bias. The average percentiles of
the expert moves converge to about 90%, only
marginally better than the Naive Bayes average of
86%.

Figure 4: The SVM and logistic regression models
had similar performance, both faring moderately
better than the Naive Bayes (not shown) model.
They both ranked 67% of expert moves in the top
10%, whereas Naive Bayes ranked 58% of expert
moves in the top 10%.

Figure 5: Similarly to Naive Bayes, there is a trend
that expert moves closer to the beginning of the
game are ranked more highly. (In general, the
SVM model outperforms Naive Bayes).

5

VIII. Future Work

Hard Negative Mining

In deciding our training set of negative examples, we
have two objectives:

1. Minimize memory requirements and
computation time by considering only a
subset of negative examples at a given point in
time. (Currently, we are discarding 95% of the
data in order to boost SVM training speed.)

2. Retain “useful” information in negative
examples.

Hard Negative Mining can potentially achieve these
dual objectives. One could first pick a random subset
of the negative examples and run a model such as
SVM. The model would then be retrained on the
negative examples classified most poorly along with an
additional random subset of the data. This step-wise
training could be repeated until convergence without
particularly high memory demands.

Time Based Features

As we hypothesized from the move vs. percentile plots,
adding more features to capture qualities of end-game
moves might be helpful. However, it could also be
interesting to see what features are relevant based on
the number of moves currently made in the game. For
example, looking for goal threats may not be as
insightful at the beginning of the game as it would be at
the end of the game. In order to learn which features
are important at each time step of a game, one could
perform feature selection specific to each time step and
choose the most relevant features accordingly.

Acknowledgements

We would like to thank the CS229 teaching staff (and
especially Sameep) for their help and guidance
throughout the project. In addition, we would like to
thank David Wu for his valuable support and insight.
We are also grateful for Stanford’s FarmShare
computing resources, which we used to train and test
our learning models.

Works Cited

1. Arimaa.com. Arimaa Game Rules. Retrieved
from
http://arimaa.com/arimaa/learn/rules.pdf

2. Arimaa Game Archive. (2013). [Data file].
Retrieved from
http://arimaa.com/arimaa/download/gameD
ata/

3. Chih-Chung Chang and Chih-Jen Lin.
LIBSVM : A library for support vector
machines. ACM Transactions on Intelligent
Systems and Technology, 2:27:1--27:27.
(2011). [Software]. Available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

4. Haskin, B. (2009). Specifications for the
Arimaa Engine Interface (AEI). Retrieved
from http://arimaa.janzert.com/aei/

5. Syed, O. (2013, May 17). Please say more
about the design decisions. [Msg 7]. Message
posted to
http://arimaa.com/arimaa/forum/cgi/YaBB.
cgi?board=talk;action=display;num=1367476
894#7

6. Wu, D. J. (2011, 31 March). Move Ranking
and Evaluation in the Game of Arimaa.
Harvard College Thesis. Retrieved from
http://arimaa.com/arimaa/papers/DavidWu
/djwuthesis.pdf

7. Bacher, J. (2006, 6 March). bot_Clueless: A
sample bot written in Java. [Software].
Available from
http://arimaa.com/arimaa/bots/

8. R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R.
Wang, and C.-J. Lin. LIBLINEAR: A Library
for Large Linear Classification, Journal of
Machine Learning Research 9, 1871-1874.
(2008). [Software]. Available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear

http://arimaa.com/arimaa/learn/rules.pdf
http://arimaa.com/arimaa/download/gameData/
http://arimaa.com/arimaa/download/gameData/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://arimaa.janzert.com/aei/
http://arimaa.com/arimaa/forum/cgi/YaBB.cgi?board=talk;action=display;num=1367476894#7
http://arimaa.com/arimaa/forum/cgi/YaBB.cgi?board=talk;action=display;num=1367476894#7
http://arimaa.com/arimaa/forum/cgi/YaBB.cgi?board=talk;action=display;num=1367476894#7
http://arimaa.com/arimaa/papers/DavidWu/djwuthesis.pdf
http://arimaa.com/arimaa/papers/DavidWu/djwuthesis.pdf
http://arimaa.com/arimaa/bots/
http://www.csie.ntu.edu.tw/~cjlin/liblinear

